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ABSTRACT
Measurements of clustering in large-scale imaging surveys that make use of photometric
redshifts depend on the uncertainties in the redshift determination. We have used light-cone
simulations to show how the deprojection method successfully recovers the real-space corre-
lation function when applied to mock photometric redshift surveys. We study how the errors
in the redshift determination affect the quality of the recovered two-point correlation function.
Considering the expected errors associated with the planned photometric redshift surveys,
we conclude that this method provides information on the clustering of matter useful for the
estimation of cosmological parameters that depend on the large-scale distribution of galaxies.

Key words: methods: data analysis – methods: statistical – techniques: photometric – galax-
ies: distances and redshifts – large-scale structure of Universe.

1 IN T RO D U C T I O N

In recent years, photometric redshift surveys have been proposed
as a way to extend large-scale structure studies towards higher red-
shifts than it is possible using spectroscopic surveys. These surveys
observe a region of the sky through a number of filters, and use the
photometry obtained to determine the redshifts, z, and spectral en-
ergy distributions of galaxies. Using photometry instead of spectra
allows them to get much deeper, but the uncertainty in the determi-
nation of redshifts is larger (Baum 1962; Koo 1986; Connolly et al.
1995; Fernández-Soto et al. 2001; Blake & Bridle 2005).

Two projects of this kind are Classifying Objects by
Medium-Band Observations (COMBO-17) and the Advanced
Large, Homogeneous Area Medium-Band Redshift Astronomical
(ALHAMBRA) survey. COMBO-17 (Wolf et al. 2003) surveyed
a total area of ∼1 deg2 using a combination of 17 broad- and
medium-band filters. It provided photometric redshifts for ∼25 000
galaxies in 0.2 < z < 1.2, with a typical error of �z � 0.03. The
ALHAMBRA survey (Fernández-Soto et al. 2007; Moles et al.
2008), currently ongoing, will observe a total area of ∼4 deg2, in
16 1◦ × 0.◦25 strips. It uses 20 medium-band, equal-width filters
covering the optical range, plus the standard J, H, Ks near-infrared
filters. Moles et al. (2008) expect to obtain photometric redshifts
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for ∼3 × 105 galaxies with IAB ≤ 24.7 (60 per cent completeness
level), zmed = 0.74 and �z � 0.015 (1 + z).

These surveys can therefore provide us with large and deep sam-
ples of galaxies. In order to study large-scale structure using these
samples, one has to deal with large redshift errors. These redshift
errors produce uncertainties in the determination of distances to
the galaxies, and hence in their three-dimensional positions (Coe
et al. 2006). This uncertainty has to be added to the one produced
by peculiar motions of galaxies. The latter is important for spec-
troscopic surveys, while the former dominates the uncertainties in
photometric surveys.

In this work, we focus on the two-point correlation function, ξ (r).
We study how it is affected by redshift errors, and describe a method
to recover its real-space value from photometric redshift survey data.
The method we use is based on measuring the two-dimensional cor-
relation function, ξ (σ , π ) (where π is the line-of-sight separation
and σ is the transverse separation), obtaining from it the projected
correlation function, �(σ ), and deprojecting it. This method (out-
lined in Section 3) was first proposed by Davis & Peebles (1983)
as a way to avoid the uncertainties due to peculiar velocities in
spectroscopic surveys, and has been used successfully in subse-
quent analyses (e.g. Saunders, Rowan-Robinson & Lawrence 1992;
Hawkins et al. 2003; Madgwick et al. 2003; Zehavi et al. 2004,
2005a).

Phleps et al. (2006) studied the correlation function of galax-
ies in COMBO-17. They used �(σ ) as a measure of real-space
clustering, and compared it to the predictions of halo occupation
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models. However, they did not attempt to recover ξ (r) from their
data.

We tested this method using data from the light-cone simulation
of Heinämäki et al. (2005). From the simulation, we produced three
mock photometric redshift catalogues, corresponding to different
accuracies in the determination of redshifts. We then compared the
correlation function ξ (r) obtained by our method in each case to the
real-space one, computed from the original catalogue.

We describe the simulation and the way in which we created the
mock catalogues in Section 2. Section 3 describes our method to
calculate ξ (r) from the simulated data. In Section 4, we present our
results, and summarize our conclusions in Section 5.

2 DATA U SED

The catalogues used in this paper come from the light-cone simu-
lation of Heinämäki et al. (2005). They simulated the distribution
of dark matter haloes in a light cone covering 2◦ × 0.◦5 in the sky
for a standard � cold dark matter cosmology (	DM = 0.226, 	B

= 0.044, 	� = 0.73, h = H0/(100 km s−1 Mpc−1) = 0.71, σ 8 =
0.84). We used the full output catalogue of the simulation, which
contains haloes with M ≥ 7.14 × 1010 h−1 M�. We calculate the
halo correlation function in our analysis. Its behaviour should be
similar enough to the galaxy correlation function as to correctly
assess the validity of our method.

As in this work we are not interested in the evolution of the corre-
lation function with redshift, we restricted our study to the redshift
bin z ∈ [2, 3]. The volume considered, in comoving coordinates, is
864 h−1 Mpc long in the line-of-sight direction, while its transverse
section varies from 130 × 32 h−1 Mpc in its close end to 160 ×
40 h−1 Mpc in its far end. The total volume is 4.56 × 106 h−3 Mpc3,
and it contains ∼180 000 haloes. We chose that redshift interval for
two reasons. At lower redshifts, the light cone is too narrow, while
at higher redshifts it contains too few haloes.

We generated three mock ‘photometric redshift catalogues’, cor-
responding to surveys with redshift uncertainties �z/(1 + z) =
0.05, 0.015 and 0.005. The first case, �z/(1 + z) = 0.05, cor-
responds typically to a survey using ∼5 broad-band filters (see
e.g. Fernández-Soto et al. 2001). �z/(1 + z) = 0.015 corresponds
to the value expected from the ALHAMBRA survey (Moles et al.
2008). The last case, �z/(1 + z) = 0.005, would correspond to a
future survey using even more filters. As an example, the Physics
of the Accelerating Universe survey project (Benı́tez et al. 2009)
aims at obtaining photometric redshifts for luminous red galaxies
(LRGs) with uncertainties �z/(1 + z) ∼ 0.0035 for z � 0.9. As
the uncertainty in photometric redshifts decreases for high-redshift
galaxies (z � 2.5), when the Lyman-α wavelength enters into the
visible domain, it should also be possible, in principle, to get such
a small �z in this case.

In creating our mock catalogues, we assumed Gaussian errors
for the photometric redshifts. This is not generally the case for real
surveys, due to the existence of a fraction of ‘catastrophic’ red-
shift determinations and the mix of different classes of objects with
a variety of photometric redshift errors. However, our assumption
of single-peaked Gaussian-distributed errors would be valid for a
catalogue selected to contain only ‘good’ redshifts. This catalogue
could be built combining the selection of a given class of objects
(e.g. LRGs), with the use of some estimate of the redshift determi-
nation quality. The latter could be the knowledge of the full redshift
probability function (Fernández-Soto et al. 2002), or the ‘odds’
parameter in the case of the Bayesian methods (Benı́tez 2000). Ex-
isting experience indicates that, depending on the survey design, it

is possible to obtain ‘good’ redshifts for objects down to magni-
tudes mlim − 1 or mlim − 2, where mlim is the limit magnitude of the
survey.

At the end of Section 4.2, we assess the robustness of our results
to the presence of ‘catastrophic’ redshifts. We consider catalogues
with a fraction of such outliers of 5 per cent. This is a conserva-
tive value, typical of broad-band, non-optimized photometric red-
shift surveys, and it should be significatively smaller in the case of
‘good’ redshifts. As an example, Ilbert et al. (2009) compiled a pho-
tometric redshift catalogue for the COSMOS field, using 30 bands
ranging from the ultraviolet to the mid-infrared. They obtained
just 0.7 per cent of outliers when comparing their bright sample
(i+AB < 22.5) to spectroscopic redshifts.

To generate each mock catalogue, we modified the position of
each point in the simulation following these steps.

(i) We calculated the ‘cosmological redshift’ of the object from
its real-space position.

(ii) We added to this ‘cosmological redshift’ the redshift due to
the peculiar velocity of the object. These peculiar velocities of the
haloes are provided by the simulation.

(iii) To simulate the expected redshift errors, we added a random
shift to the resulting redshift, following a Gaussian distribution with
standard deviation equal to �z in each case. The redshift obtained
is the ‘observed redshift’ of the object.

(iv) We finally obtained the three-dimensional position of the
object corresponding to this ‘observed redshift’ and included it in
the mock catalogue.

This distortion process was carried out for all the points in the
whole cone of the simulation. The selection of the points in the
redshift bin z ∈ [2, 3] was performed using the new ‘observed
redshifts’, thus simulating the selection process in a real survey.

Fig. 1 shows the distribution of haloes in the original catalogue
and in the mock photometric catalogues. The figure shows the real-
space positions of haloes, not affected by peculiar velocities, and
thus does not show the finger of God or coherent infall effects ob-
served in spectroscopic surveys. Due to redshift errors, structures
which are clearly seen in real space are smoothed and hardly rec-
ognizable in photometric redshift data.

3 ME T H O D

The most widely used method to measure the correlation function
consists in comparing the distribution of points in the data catalogue
with a random distribution of points generated in the same volume.
To make the comparison, one calculates the number of pairs with
separation in the range [r, r + dr] between points in the data cat-
alogue [DD(r)], between points in the random catalogue [RR(r)],
and between a point in the real catalogue and a point in the random
catalogue [DR(r)]. The estimator used in this work to compute ξ (r)
is (Landy & Szalay 1993)

ξ̂ (r) = 1 +
(

NR

ND

)2
DD(r)

RR(r)
− 2

NR

ND

DR(r)

RR(r)
, (1)

where ND is the number of points in the data catalogue and NR is
the number of points in the random catalogue.

However, this method cannot be used when the studied catalogue
comes from a photometric survey. The large errors in redshift and
hence in the line-of-sight positions produce two effects that have to
be considered. On one side, these random shifts in position erase
correlations between points, and hence ξ (r) measured according
to (1) would be much lower than the real ξ (r). On the other side,
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Figure 1. The distribution of haloes in the four catalogues used: the original real-space catalogue and the three mock photometric catalogues. The distribution
is shown projected on a longitudinal plane, and only 20 per cent of the points are shown, for clarity.

as the shifts are only in the line-of-sight direction, isotropy of the
distribution is lost. Correlation is only lost along the longitudinal
direction, but it is conserved in the transverse plane.

The method we used to recover real-space ξ (r) from the mock
photometric redshift catalogues is the same described in Davis &
Peebles (1983) and Saunders et al. (1992) for spectroscopic surveys.
It is based in the decomposition of pair separations in parallel and
perpendicular distances (π and σ , respectively).

Let s1 and s2 be the measured positions (in ‘observed redshift
space’) of two points in the catalogue. We then define the separation
vector, s ≡ s2 − s1, and the line-of-sight vector, l ≡ s1 + s2, of
the pair. From these, we now define the parallel and perpendicular
distances of the pair as

π ≡ |s · l|
|l| , σ ≡

√
s · s − π 2 . (2)

Once we have defined π and σ for each pair of points, we can
calculate the two-dimensional correlation function, ξ (σ , π ), in an
analogous way to equation (1), substituting the (r) dependence by
(σ , π ). From ξ (σ , π ), we define the projected correlation function
as

�(σ ) ≡ 2
∫ ∞

0
ξ (σ, π )dπ . (3)

As � depends only on σ , and the angle between any pair of points
is small, it will not be affected significantly by redshift errors, as
these will mainly produce shifts in π .

Assuming that the real-space distribution is isotropic, we can
relate � to the real-space correlation function, ξ r, as

�(σ ) = 2
∫ ∞

σ

ξr(r)
rdr

(r2 − σ 2)1/2
. (4)

This relation can be inverted, obtaining ξ r in terms of � as the Abel
integral:

ξr(r) = − 1

π

∫ ∞

r

d�(σ )

dσ

dσ

(σ 2 − r2)1/2
. (5)

Therefore, the method proposed to compute ξ (r) from photo-
metric survey data consists of the following steps. We first obtain
ξ (σ , π ) from counting pairs of points in the data and in the random
catalogues. The projected correlation function, �(σ ), is then ob-
tained by integration of equation (3). Finally, the real-space correla-
tion function, ξ (r), is calculated from equation (5). Some problems
arise in the numerical integration of equations (3) and (5). Both
integrals extend formally to +∞. However, when computing them
numerically, we have to set finite upper limits, πmax and σ max.

In the first case, the value of πmax should be large enough to
include almost all the correlated pairs. However, if it is too large,
this would introduce extra noise in the calculation.

When integrating equation (5), the upper limit σ max is fixed,
for pencil-beam surveys, by the maximum transverse separation
allowed by the geometry. The way we used to evaluate (5) was that
of Saunders et al. (1992). We interpolated � linearly between its
values in each σ bin, and then integrated (5) analytically. Taking �i

as the value of � for the bin centred at σi , we have

ξ (σi) = − 1

π

∑
j≥i

�j+1 − �j

σj+1 − σj

ln

⎛
⎝σj+1 +

√
σ 2

j+1 − σ 2
i

σj +
√

σ 2
j − σ 2

i

⎞
⎠ .

Redshift errors will influence the result in two ways. First,
these errors change the apparent line-of-sight direction l/|l| (see
equation 2), and through that, the apparent line-of-sight distance
π , and, most important, the perpendicular distance σ . These errors
grow with the redshift error and with the width of the galaxy pair.

Another, and much stronger, source of errors is the assumption
that the apparent distance in redshift space is the real distance be-
tween two galaxies – this assumption is necessary to obtain our basic
integral relation (4). In case of photometric errors, this assumption
is hardly justified, but we will see that the inverted correlation func-
tions are close to the real one, anyway. The errors caused by this
assumption grow with the redshift errors.
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4 R ESULTS

We tested the deprojection method to measure ξ (r) using the mock
photometric catalogues described in Section 2. We applied the
method described above to data from the three mock catalogues,
and obtained ξ dep(r) in each case. These were then compared to
the real-space ξr (r) calculated from the undistorted simulation cat-
alogue using equation (1) directly.

The value used for the integration limit in equation (5) was
σ max = 130 h−1 Mpc. This is about 80 per cent of the maximum
transverse separation allowed by the geometry of the light cone. We
used 32 bins in σ , logarithmically spaced between 0.1 h−1 Mpc and
σ max.

We performed several tests to choose the appropriate value for
πmax, scaling it relative to the �z of the catalogue considered. The
ξ (r) recovered increased with πmax for values πmax � 3�z, and
converged to fixed values for larger πmax. However, the noise also
increased with πmax. We adopted a conservative value of πmax �
4�z for our calculations, in order to be sure to include all correlated
pairs, and not introducing too much extra noise.

To estimate the correlation function error and covariance between
bins in r, we used the jackknife method (see e.g. Zehavi et al. 2005b).
We divided our volume in 12 equal subvolumes, and constructed our
jackknife samples omitting one subvolume at a time. We repeated
the full calculation of ξ (r) for each of these samples. Denoting by ξk

i

the value of the correlation function obtained for bin i in jackknife

Figure 2. The two-dimensional correlation function ξ (σ , π ) obtained for the real-space catalogue (top-left panel), and for the mock photometric catalogues
with �z = 0.005(1 + z) (top-right panel), 0.015(1 + z) (bottom-left panel) and 0.05(1 + z) (bottom-right panel). Contours are drawn at ξ = 10, 3, 1, 0.3, 0.1,
0.03, 0.01 and 0, with decreasing thickness. Contours at 0.1 and 0 are dashed.

sample k, the covariance matrix is then

Cij = N − 1

N

N∑
k=1

(
ξk
i − ξ̄i

) (
ξk
j − ξ̄j

)
,

where ξ̄i is the average of the values obtained for bin i and N = 12.

4.1 Effect of redshift errors on ξ (σ, π )

As a first step in the calculation of ξ (r), we calculated ξ (σ , π ) for
each mock catalogue. The results are shown in Fig. 2. We also plot
the ξ (σ , π ) obtained in the real-space catalogue, for comparison.
Two effects of the redshift errors can be observed. First, correlation
decreases with the value of �z for each catalogue. Also, there is a
loss of symmetry of ξ (σ , π ) in these plots. In real space, due to the
isotropy of the distribution, ξ (σ , π ) has circular symmetry (seen as
a ‘boxy’ symmetry in the logarithmic scale used). However, we can
see that when we calculate it for the mock photometric catalogues,
the distribution gets stretched along the π -axis.

4.2 Tests of the deprojection method

When comparing our results for ξ dep(r) with the real-space ξr (r), we
restricted the analysis to the range r ∈ [0.5, 30] h−1 Mpc. The lower
limit is given by the way haloes were selected in the simulation.
They were selected using a friends-of-friends algorithm, therefore

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS



Real-space correlation function from photo-z 5

Figure 3. The projected correlation function obtained from the mock pho-
tometric catalogues, compared to the real-space result. The solid line corre-
sponds to a spline fit to ξ r(r), as explained in the text. Small shifts have been
applied along the σ -axis, for clarity. The feature observed at large scales for
the �z = 0.05(1 + z) catalogue is due to the large πmax value used in that
case.

if we had two haloes at a too small separation, they would merge
into a single halo (Heinämäki et al. 2005). This prevents us from
measuring ξ (r) at such small distances. The upper limit was fixed
because of the geometry of the light cone. As the maximum separa-
tion along the short transverse axis is between 30–40 h−1 Mpc, we
cannot trust our method beyond these scales.

We measured ξ r(r) directly from the real-space catalogue. In
order to compare the real-space result to the one obtained using our
method in the mock photometric catalogues, we fitted ξ r(r) by a
third-order spline.

From ξ (σ , π ), we obtained the projected correlation function
�(σ ) for each of the mock photometric catalogues. In Fig. 3, we
compare the function �(σ ) calculated for the mock catalogues to
the function obtained from the spline fit to the real-space ξ r(r),
according to equation (4). The results obtained for the �z/(1 + z) =
0.005 and 0.015 catalogues closely follow the real-space result. In
the case of the �z/(1 + z) = 0.05 catalogue, however, �(σ ) falls
below the real-space result for r � 10 h−1 Mpc. This feature is due to
the fact that the value of πmax = 600 h−1 Mpc used for that catalogue
gets close to the line-of-sight length of the simulation box used. As
πmax scales with �z, this issue does not affect the other catalogues.

Our final result for the deprojected correlation function, ξ dep(r),
obtained from the mock photometric catalogues is shown in Fig. 4,
where we compare it to the real-space correlation function, ξ r(r).

To quantify the quality of the recovery, we used an ‘average
normalized residual’, �ξ , as figure of merit, defined as

�ξ = 1

N

∑
i

∣∣∣∣ ξdep(ri) − ξr(ri)

ξr(ri)

∣∣∣∣ ,

where ri are the values of the bins in r where we measure ξ , and N
is the number of such bins considered.

Without prior knowledge of ξ r(r) we could anyhow estimate the
quality of the recovery calculating the quantity:

�̂ξ = 1

N

∑
i

C
1/2
ii

|ξdep(ri)| .

We show the values of �ξ and �̂ξ obtained for the different mock
catalogues in Table 1. We computed them for different ranges in
r, in order to assess the validity of the method at different scales.
From the values of �ξ we see that for mock catalogues with �z ≤
0.015 (1 + z) we recover ξ (r) within a 5 per cent in the average for
scales r < 10 h−1 Mpc. At larger scales, the deviations from ξ r are
larger (12–20 per cent). In the case with the largest redshift errors,
our method is only valid for very small scales, r < 2 h−1 Mpc, where
the deviations are of 7 per cent. We note that, in all cases where the
method is valid, �̂ξ > �ξ . Hence, the jackknife method allows us to
estimate the errors to an acceptable precision. We remark, however,
that for large values of �z the jackknife error underestimates the
real one as measured from the residuals or compared to other �z
values, especially over medium scales (2 − 20 h−1 Mpc).

Fig. 5 shows the covariance matrix for the real-space calculation
of ξ r(r), and Fig. 6 shows it for the calculation of ξ dep(r) in each
case. As the absolute values of the covariance drop rapidly with
distance, we show here the normalized covariances

cij = Cij√
CiiCjj

.

While the absolute values of the covariances grow with the red-
shift error, and are always larger than the covariances for the real-
space correlation function, the structure of the covariance matrix is
different. While the real-space covariances are large for almost all
bin pairs, the covariance matrices for photometric correlation func-
tions are much closer to diagonal. This is similar to the fact that the
best estimates of the correlation function are obtained by integrat-
ing over line-of-sight distances, even from spectroscopic redshift
catalogues (see, e.g., Zehavi et al. 2005a).

In order to assess the robustness of the method to the presence of
‘catastrophic’ redshift determinations, we repeated the calculation
in catalogues containing 5 per cent of such outliers. Outliers were
created by selecting points at random in the original catalogue, and
assigning them a random distance within the range considered. Even
with the conservative assumption of a large fraction of outliers, our
method recovers ξ (r), although the values of �ξ are slightly larger
in this case, ranging from 5 to 13 per cent for r < 10 h−1 Mpc
and �z ≤ 0.015 (1 + z). The result obtained for the catalogue
with �z = 0.015 (1 + z), and containing 5 per cent of outliers, is
shown in Fig. 7. Similar results were obtained when a fraction of
the outliers were taken from a Poisson sample within our volume.
This case would reproduce the effect of stellar contamination in the
catalogue.

We performed an additional test of the deprojection method us-
ing a realization of a segment Cox process, for which an ana-
lytical expression of the correlation function is known (Martinez
et al. 1998). The results of those tests are further explained in
Appendix A.

5 C O N C L U S I O N S

We have shown the reliability of recovering the real-space two-
point correlation function from photometric redshift surveys. We
have used light-cone simulations to produce mock catalogues that
have been distorted by randomizing the object positions along the
line of sight following Gaussian distributions with different standard
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Figure 4. Comparison between the deprojected correlation function, ξdep(r) (open circles), and the real-space correlation function, ξ r(r) (solid circles), for

each mock photometric catalogue. The error bars plotted correspond to the diagonal terms in the covariance matrix, C1/2
ii .

Table 1. Values of �ξ and �̂ξ obtained for the three mock photometric
catalogues and for different scale ranges.

�z
(1+z) = 0.005 �z

(1+z) = 0.015 �z
(1+z) = 0.05

Range (h−1 Mpc) �ξ �̂ξ �ξ �̂ξ �ξ �̂ξ

0.5 < r < 30 0.07 0.17 0.09 0.26 0.36 0.67
0.5 < r < 2 0.04 0.05 0.04 0.10 0.07 0.15
2 < r < 10 0.05 0.09 0.05 0.16 0.28 0.16
10 < r < 30 0.12 0.40 0.20 0.57 0.79 1.89

deviation similar to the associated nominal errors of the photometric
redshift surveys �z/(1 + z).

The method used to recover the real-space correlation function
consists in obtaining the projected correlation function by integrat-
ing the two-dimensional correlation function along the line of sight.
The projected correlation function is then deprojected assuming that
redshift errors do not affect transverse distances.

The deprojection method applied on the distorted mock surveys
provides quite satisfactory results for recovering the real-space cor-
relation function. We have quantified the quality of the recovering
process as a function of the errors in the photometric redshifts.
Our method was able to recover the real-space correlation function
within a 5 per cent for r < 10 h−1 Mpc from photometric catalogues
with �z ≤ 0.015 (1 + z). For larger redshift errors, the method is
only valid (within 7 per cent) for smaller scales, r < 2 h−1 Mpc.
Hence, our method allows the extraction of useful information on
the clustering of galaxies through the correlation function. That in-
formation can be used for the estimation of cosmological parameters
based on data from photometric redshift surveys.

We discuss now possible alternatives to the method exposed here.
A variation of the method would be to use a smaller value of πmax in
the integration of equation (3), and multiply the result by a constant
correction factor. This would reduce the extra noise introduced by
the integration along a large range in the π direction. We found
that, for πmax � �z, a correction factor of � 2 works well in
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Figure 5. The normalized covariance matrix (cij ) of the correlation function
measured directly from the real-space catalogue.

our simulation, generally reducing the error. However, the optimal
value is slightly different for each mock photometric catalogue.
The main problem for the use of this method would be the accurate
determination of the correction factor in each case, as any deviation
from the optimal value would introduce a bias in the result. The
Gaussian approximation used here is probably not so close to reality
as to infer that constant from our simulations.

Figure 6. The normalized covariance matrices (cij ) of the deprojected correlation function measured from the mock photometric catalogues with
�z = 0.005(1 + z) (top-left panel), 0.015(1 + z) (top-right panel) and 0.05(1 + z) (bottom panel).

Figure 7. The deprojected correlation function obtained for the �z =
0.015(1 + z) catalogue with and without outliers. The continuous line is
the real-space correlation function.

Another possible alternative to the method described in this work
could make use of the new estimator ω presented by Padmanabhan,
White & Eisenstein (2007). They proposed ω as an alternative to
the projected correlation function to use with spectroscopic survey
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data. In principle, it can also be applied to photometric redshift
survey data, in a way similar to the one presented here, but we did
not investigate this possibility further.
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APPEN D IX A : TEST O F THE METHOD USI NG
A SEGM ENT COX PRO CESS

In order to test our method against an analytical prediction for
ξ (r), we used a distribution of points given by a segment Cox

process. This process is produced in the following way (Martı́nez
& Saar 2002): segments of a given length, l, are randomly scattered
within a volume. Then, points are randomly distributed along these
segments. The length density of the system of segments is LV = λs

l, where λs is the mean number of segments per unit volume. The
density of the point process is then

λ = λlLV = λlλsl,

where λl is the mean number of points per unit length of the seg-
ments. The correlation function of the point process equals the
correlation function of the system of segments (Stoyan, Kendall &
Mecke 1995), which is given by

ξCox(r) =
{ 1

2πr2LV
− 1

2πrlLV
, r ≤ l

0 , r > l
. (A1)

We simulated a segment Cox process in the same volume con-
sidered in the rest of this work. The parameters we used were l =
50 h−1 Mpc, λs = 2 × 10−4 h3 Mpc−3 and λl = 4 h Mpc−1, which
result in LV = 0.01 h2 Mpc−2 and λ = 0.04 h3 Mpc−3. These param-
eters were chosen to approximately match the density of points and
the behaviour of ξ (r) in the haloes simulation. We considered the
catalogue obtained directly from the segment Cox process as the
‘real-space’ catalogue. We created three mock ‘photometric red-
shift catalogues’ following the same procedure and using the same
values for �z as described in Section 2.

We directly calculated the correlation function for the real-space
catalogue according to equation (1). For the three mock ‘photomet-
ric catalogues’, we used the method described in Section 3 to obtain
the deprojected correlation function. The estimation of errors was
performed using the same jackknife method as described above for
the haloes simulation case. We checked that the errors obtained were
comparable to the dispersion of the results from several realizations
of the Cox process. The comparison of our results to the analytical
prediction (A1) is shown in Fig. A1.

We quantify the quality of the recovery in the same way as we
did for the haloes simulation, using the quantities �ξ and �̂ξ . In
this case, we define �ξ as the relative deviation of ξ dep(r) from the
analytical prediction ξCox(r) (equation A1). The values obtained are
shown in Table A1.

We recover the real-space correlation function within 10 per cent
for the �z/(1 + z) = 0.005 catalogue. In this case, however, our
method starts to fail at r � 3 − 4 h−1 Mpc for the �z/(1 + z) = 0.015
catalogue (this is seen as a larger value of �ξ for this range, and
as an increasing trend in Fig. A1.). When applying the method to
the �z/(1 + z) = 0.05 catalogue, ξ dep(r) is consistently higher than
ξCox(r). Although this bias could be an artefact of this particular
point process, it also means that the deprojection method described
in this work cannot be fully trusted when it is applied to catalogues
with large redshift errors.

Table A1. Values of �ξ and �̂ξ obtained for the three mock photometric
catalogues obtained from a Cox process, and for different scale ranges.

�z
(1+z) = 0.005 �z

(1+z) = 0.015 �z
(1+z) = 0.05

Range (h−1 Mpc) �ξ �̂ξ �ξ �̂ξ �ξ �̂ξ

0.5 < r < 10 0.08 0.16 0.18 0.23 0.35 0.40
0.5 < r < 2 0.06 0.08 0.07 0.12 0.23 0.21
2 < r < 10 0.10 0.22 0.27 0.33 0.46 0.57
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Figure A1. The correlation function measured in the real space and the three mock ‘photometric’ catalogues obtained from a segment Cox process (open
circles), compared to the analytical prediction, equation (A1), for this process (solid line).
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